skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schlichting, Hilke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many planets in the solar system and across the Galaxy have hydrogen-rich atmospheres overlying more heavy element-rich interiors with which they interact for billions of years. Atmosphere–interior interactions are thus crucial to understanding the formation and evolution of these bodies. However, this understanding is still lacking in part because the relevant pressure–temperature conditions are extreme. We conduct molecular dynamics simulations based on density functional theory to investigate how hydrogen and water interact over a wide range of pressure and temperature, encompassing the interiors of Neptune-sized and smaller planets. We determine the critical curve at which a single homogeneous phase exsolves into two separate hydrogen-rich and water-rich phases, finding good agreement with existing experimental data. We find that the temperature along the critical curve increases with increasing pressure and shows the influence of a change in fluid structure from molecular to atomic near 30 GPa and 3000 K, which may impact magnetic field generation. The internal temperatures of many exoplanets, including TOI-270 d and K2-18 b, may lie entirely above the critical curve: the envelope is expected to consist of a single homogeneous hydrogen–water fluid, which is much less susceptible to atmospheric loss as compared with a pure hydrogen envelope. As planets cool, they cross the critical curve, leading to rainout of water-rich fluid and an increase in internal luminosity. Compositions of the resulting outer, hydrogen-rich and inner, water-rich envelopes depend on age and instellation and are governed by thermodynamics. Rainout of water may be occurring in Uranus and Neptune at present. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026
  2. Abstract We investigate the consequences of nonideal chemical interaction between silicate and overlying hydrogen-rich envelopes for rocky planets using basic tenets of phase equilibria. Based on our current understanding of the temperature and pressure conditions for complete miscibility of silicate and hydrogen, we find that the silicate-hydrogen binary solvus will dictate the nature of atmospheres and internal layering in rocky planets that garnered H2-rich primary atmospheres. The temperatures at the surfaces of supercritical magma oceans will correspond to the silicate-hydrogen solvus. As a result, the radial positions of supercritical magma ocean–atmosphere interfaces, rather than their temperatures and pressures, should reflect the thermal states of these planets. The conditions prescribed by the solvus influence the structure of the atmosphere, and thus the transit radii of sub-Neptunes. Separation of iron-rich metal to form metal cores in sub-Neptunes and super-Earths is not assured due to prospects for neutral buoyancy of metal in silicate melt induced by dissolution of H, Si, and O in the metal at high temperatures. 
    more » « less
  3. Abstract The boundary of solar system object discovery lies in detecting its faintest members. However, their discovery in detection catalogs from imaging surveys is fundamentally limited by the practice of thresholding detections at signal-to-noise (SNR) ≥ 5 to maintain catalog purity. Faint moving objects can be recovered from survey images using the shift-and-stack algorithm, which coadds pixels from multi-epoch images along a candidate trajectory. Trajectories matching real objects accumulate signal coherently, enabling high-confidence detections of very faint moving objects. Applying shift-and-stack comes with high computational cost, which scales with target object velocity, typically limiting its use to searches for slow-moving objects in the outer solar system. This work introduces a modified shift-and-stack algorithm that trades sensitivity for speedup. Our algorithm stacks low-SNR detection catalogs instead of pixels, the sparsity of which enables approximations that reduce the number of stacks required. Our algorithm achieves real-world speedups of 10–103× over image-based shift-and-stack while retaining the ability to find faint objects. We validate its performance by recovering synthetic inner and outer solar system objects injected into images from the DECam Ecliptic Exploration Project. Exploring the sensitivity–compute time trade-off of this algorithm, we find that our method achieves a speedup of ∼30× with 88% of the memory usage while sacrificing 0.25 mag in depth compared to image-based shift-and-stack. These speedups enable the broad application of shift-and-stack to large-scale imaging surveys and searches for faint inner solar system objects. We provide a reference implementation via thefind-asteroidsPython package and this URL:https://github.com/stevenstetzler/find-asteroids. 
    more » « less
    Free, publicly-accessible full text available November 26, 2026
  4. Abstract We present a detailed study of the observational biases of the DECam Ecliptic Exploration Project’s B1 data release and survey simulation software that enables direct statistical comparisons between models and our data. We inject a synthetic population of objects into the images, and then subsequently recover them in the same processing as our real detections. This enables us to characterize the survey’s completeness as a function of apparent magnitudes and on-sky rates of motion. We study the statistically optimal functional form for the magnitude, and develop a methodology that can estimate the magnitude and rate efficiencies for all survey’s pointing groups simultaneously. We have determined that our peak completeness is on average 80% in each pointing group, and our magnitude drops to 25% of this value atm25= 26.22. We describe the freely available survey simulation software and its methodology. We conclude by using it to infer that our effective search area for objects at 40 au is 14.8 deg2, and that our lack of dynamically cold distant objects means that there at most 8 × 103objects with 60 <a< 80 au and absolute magnitudesH≤ 8. 
    more » « less
  5. Abstract We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudesmVR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudesH∼ 10, as well as a dynamically detached object found at 76 au (semimajor axisa≈ 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt. 
    more » « less